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Background
• Real-world radar clutter environments depend on site-specific 

factors including:
– Terrain
– Ground cover type

• Site-specific clutter modeling is fundamental to understanding 
STAP performance in real-world settings

• This has led to the development of site-specific performance 
bound techniques

– Thermal noise limited performance is optimistic for systems operating in 
real-world environments

– Theory is based on ideal site-specific clutter covariance modeling

• It is logical that the models used in site-specific performance 
analyses could also be used when processing the radar data to 
potentially improve radar performance

• For many systems it is not possible to use full-DoF STAP due to 
limited computational resources and limited sample support
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Site-specific Clutter Modeling
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Mountain Top Monostatic Clutter

• Range-Doppler 
clutter maps shown 
for RSTER and 
simulations

• Simulation results 
shown both with 
and without DTED

• Simulation w/ DTED 
results in a 
significantly better 
characterization of 
the experimental 
data

• Site-specific models 
capture a majority 
of the clutter 
features
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notch width 
varies little 
with range

significant 
notch width
variation 
with range

Knowledge-Aided Signal Processing

• The a priori knowledge will typically be used in two ways
– Indirect: exploit knowledge sources to segment training data, etc.
– Direct: exploit knowledge sources to place nulls in the beamformer 

pattern

• This presentation develops a methodology for using a priori
knowledge directly in the reduced-DoF space-time 
beamforming solution

• Clutter cancellation based on a priori knowledge alone will 
typically not result in adequate performance 

• Focus will be on techniques that combine or “blend” 
adaptive and deterministic filtering

• The performance of these filtering techniques will be a 
function of how well the system is calibrated
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Interference Modeling
• Assume the clutter signal plus thermal noise model

• The modulation will typically be small

• Clutter signal with small modulation

• Clutter correlation matrix
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• The usual optimization problem:

• Incorporate covariance model as a quadratic constraint

• Gives:
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Full-DoF STAP

want weights to be
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Constraint Satisfaction

• The two loading levels are determined by assuring satisfaction 
of the two soft constraints

• Leads to two coupled non-linear inequality relations for the 
two real scalar loading levels embedded in Q

• No closed form solution, must be solved iteratively
• In the white noise gain relation,            to obtain solution
• In the clutter orthogonality relation, reducing      requires that 

the colored loading level      be increased
• In the limit of             (true orthogonality of weights to the   

clutter model),
• This can be demonstrated directly by comparing the quadratic 

constraint weight solution with a multiple linear constraint 
weight solution that enforces orthogonality explicitly
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Pre-Filter Interpretation
Full-DoF STAP
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• Colored loading beamformer can be expressed as:

• This filtering solution is equivalent to deterministic pre-
filtering followed by adaptive processing (i.e., 2 stages)

2/1−Qx
x~ STAP

covariance est.
constraint

diagonal loading

deterministic adaptive

it will generally be easier to estimate the 
covariance of the pre-filtered data than 
the original data because it is likely to 

have a lower effective rank
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Reduced-DoF STAP
• For many systems it is not possible to use full-DoF STAP 

due to limited computational resources and sample support
• A common approach is to break the full-DoF problem into a 

number of smaller reduced-DoF problems via an NMxD (D < 
NM) transformation Hm on the data:

• The transformation Hm can also be applied to the clutter 
covariance model and thermal noise:

• This presentation will focus on multi-bin element space 
post-Doppler STAP
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Knowledge-Aided Quadratic Constraints
Reduced-DoF STAP

• Similar to the full-DoF case we can incorporate the 
reduced-DoF covariance model as a quadratic constraint

• Gives:

• Same form as full-DoF case (i.e., colored loading) 
• Can also be shown to be a prefilter on the reduced DoF

data
• Can be implemented in the data domain

want weights to be 
“orthogonal” to the 
reduced-DoF a 
priori clutter model

this is the KA part

“colored loading”
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Observation

• Two approaches to reduced DoF processing with knowledge-
aided pre-filters:

Full-DoF KA
prefilter

DoF-reducing
transformation

Reduced-DoF
adaptive

beamforming

DoF-reducing
transformation

Reduced-DoF
KA prefilter

Reduced-DoF
adaptive

beamforming

Approach #1

Approach #2
Reduced –DoF

colored
loading
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Implementation
• Typically, the loading matrix Q will be Hermitian and positive-

definite so that its Cholesky decomposition exists

• Approach #1, full-DoF pre-filter THEN reduced DoF/beamform

• Approach #2, reduced DoF THEN pre-filter/beamform

• If loading matrix is constant with range, both sets of combined 
pre-filter/reduced DoF matrices can be pre-computed once

• Both can be efficiently implemented in data domain by 
augmenting data matrix with identity matrix and using 
QR decomposition
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Implementation, Cont’d

• However, if Q is a function of range, then pre-filter must be 
computed several times � Cholesky decomp scales as 
O(DoF)^3; more expensive for full-DoF

• For Approach # 2, pre-filtering can be avoided by equivalently 
color-loading reduced DoF data

• Augment data matrix with Cholesky decomposition of reduced 
color-loading matrix; then perform efficient QR decomposition

– As efficient as diagonal-loading-only in data domain
– Avoids application of inverse Cholesky matrix

• If color-load, instead of pre-filter, in data domain for full-DoF, as 
in Approach # 1, an additional Cholesky decomposition will be 
required after the reduced DoF transformation since

• Appears Approach # 2 may be computationally less expensive 
than #1; pursue # 2 here; examine performance of # 1 vs # 2 in 
future
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KASSPER Simulated Data Cube
Parmeter Value 

RF frequency 1240 MHz 
Bandwidth 10 MHz 

PRF 1984 Hz 
Peak Power 15 kW 
Duty factor 10% 
Noise figure 5 dB 

System losses 9 dB 
Platform speed 100 m/s 
Platform altitude 3 km 

Transmit aperture 8 vertical x 11 horizontal 
Receive aperture* 8 vertical x 1 horizontal 

Horizontal antenna spacing 10.9 cm 
Vertical antenna spacing 14.07 cm 

Number of receive sub-apertures 11  
Front-to-back ratio 25 dB 
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• Site-specific data set generated 
under KASSPER program

• Heterogeneous clutter, ground 
vehicles, ICM, calibration errors

• We will focus on the problem of 
detecting slow moving targets in 
heterogeneous clutter � work 
with clutter-only data
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Algorithm Details

• Assume a ring of scatterers every 0.2° around the platform at the 
desired range bin

– No knowledge about: terrain, calibration errors (~5°-10° phase errors), 
ICM, backlobe level, Tx pattern

– Only platform heading, speed, and PRF are assumed known

• Compute a matrix that represents the ground clutter (subspace):

• This form is efficient to compute but not as accurate as the true 
ideal covariance which will include information about the terrain

• Scale this matrix and add to the diagonally-loaded reduced-DoF
sample covariance matrix:

• Reduced-DoF implementation is multi-bin element space post-
Doppler STAP with untapered and orthogonal Doppler filters
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• Loading levels:
βL = 0 dB
βd = 30 dB

• Colored loading 
beamformer is 
more robust to 
reductions in 
sample support

• Post Doppler 
element space 

– 3 bins
– 11 elements

Interested in
slow moving

targets
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Detection Performance Summary
(“endo-clutter”)

Post-Doppler 
DoFs:

3 adjacent bins

2 bins away from
the mainlobe 

clutter bin• Detector includes median CFAR normalization of the 
beamformer output prior to thresholding

• No targets in the secondary beamformer or CFAR training 
data

• 1000 Injected test targets: all ranges, Doppler = 24.90 m/s, 
Target SNR is 25 dB at closest range bin (~5 dBsm)

• Colored loading beamformer is more robust as sample 
support is reduced
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Detection Performance Summary
(“exo-clutter”)

• Same result as previous slide except injected target 
Doppler is 99.85 m/s  

• All the beamformers perform well when target is 
separated from the mainbeam clutter

• Use the most computationally efficient algorithm in 
these Doppler bins

Post-Doppler 
DoFs:

3 adjacent bins

3 bins away from
the mainlobe 

clutter bin
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Summary
• A method for incorporating a priori knowledge in the space-

time beamformer solution using quadratic constraints has 
been presented and extended to reduced-DoF STAP 
implementations

• Quadratic constraint solution results in “colored” loading 
which can be implemented efficiently in the data domain 
and offers a “blending” between adaptive and deterministic 
filtering

• The fidelity of the colored loading matrix will depend on the 
available a priori knowledge sources and computational 
resources

• The technique was applied to KASSPER site-specific 
simulation data and shown to result in more robust 
performance near the mainbeam clutter � improved MDV 
performance


